Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Bu-Gao Zhou, Zuo-Xiang Wang,* Xiao-Yong Qiu and Chun-Yi Liu

Department of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China

Correspondence e-mail:
wangzx0908@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=571 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.060$
$w R$ factor $=0.145$
Data-to-parameter ratio $=15.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Aquabis[3-ethyl-4-(4-methylphenyl)-5-(2-pyridyl)-4H-1,2,4-triazole- $\left.\kappa^{2} N, N^{\prime}\right]$ copper(II) disalicylate dihydrate

In the title complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Cu}^{\text {II }}$ atom is in a slightly distorted square-pyramidal coordination geometry. In the crystal structure, intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds form centrosymmetric clusters.

Comment

The coordination chemistry of 1,2,4-triazole derivatives has received considerable attention in recent years (Bencini et al., 1987; Koningsbruggen et al., 1995; Moliner et al., 1998, 2001; Klingele \& Brooker, 2003). Some spin-crossover complexes of 1,2,4-triazoles with iron(II) salts have been reported, which could be used as molecular-based memory devices, displays and optical switches (Garcia et al., 1997; Kahn \& Martinez, 1998). We report here the crystal structure of the title compound, (I).

(I)

The molecular structure of (I) is shown in Fig. 1. The $\mathrm{Cu}^{\mathrm{II}}$ atom is coordinated by two bis-chelating 3-ethyl-4-(p -methylphenyl)-5-(2-pyridyl)-1,2,4-triazole ligands and one water molecule in a slightly distorted square-pyramidal coordination geometry having a $\mathrm{CuN}_{2} \mathrm{~N}_{2}^{\prime} \mathrm{O}$ centre. In the crystal structure, intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) link all the components of the asymmetric unit and form centrosymmetric clusters.

Figure 1
The asymmetric unit of the title compound with atomic labelling. Displacement ellipsoids are shown at 30% probability level. H atoms are not shown.

Received 23 October 2006
Accepted 26 October 2006

Experimental

A solution of 3-ethyl-4-(p-methylphenyl)-5-(2-pyridyl)-1,2,4-triazole $(1.06 \mathrm{~g}, 4.0 \mathrm{mmol})$ in 15 ml of ethanol was added to a solution of copper(II) disalicylate $(0.68 \mathrm{~g}, 2.0 \mathrm{mmol})$ in 15 ml of water at room temperature, and stirred for 5 min , then filtered; the filtrate was left to stand at room temperature. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol-water solution $(1: 1 \mathrm{v} / \mathrm{v})$ at room temperature for several days.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ -
$\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=920.46$
Triclinic, $P \overline{1}$
$a=10.076$ (9) \AA 。
$b=12.845$ (11) A
$c=18.337$ (16) \AA
$\alpha=106.716(11)^{\circ}$
$\beta=100.195(12)^{\circ}$

Data collection

Bruker SMART APEX CCD diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.860, T_{\text {max }}=0.887$
$\gamma=92.669(14)^{\circ}$
$V=2225(3) \AA^{3}$
$Z=2$
$D_{x}=1.374 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.56 \mathrm{~mm}^{-1}$
$T=571$ (2) K
Block, blue
$0.28 \times 0.24 \times 0.22 \mathrm{~mm}$

20846 measured reflections 8763 independent reflections 7180 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.037$ $\theta_{\text {max }}=26.0^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.07 P)^{2} \\
&+1.99 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.51 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.145$
$S=1.01$
8763 reflections
581 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 6$	$1.970(3)$	$\mathrm{Cu} 1-\mathrm{N} 5$	$2.042(3)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$1.984(3)$	$\mathrm{Cu} 1-\mathrm{O} 1$	$2.186(3)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.011(3)$		
$\mathrm{N} 6-\mathrm{Cu} 1-\mathrm{N} 2$	$162.39(12)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 5$	$172.20(12)$
N6-Cu1-N1	$98.66(12)$	$\mathrm{N} 6-\mathrm{Cu} 1-\mathrm{O} 1$	$98.82(12)$
N2-Cu1-N1	$80.05(12)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 1$	$98.79(12)$
N6-Cu1-N5	$79.92(12)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1$	$94.73(12)$
N2-Cu1-N5	$98.96(12)$	$\mathrm{N} 5-\mathrm{Cu} 1-\mathrm{O} 1$	$93.07(12)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{C} \cdots \mathrm{O} 5$	0.85	1.98	2.675 (4)	139
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2$	0.82	2.01	2.799 (4)	161
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O} 2$	0.82	1.55	2.301 (4)	152
O7-H7 . ${ }^{\text {O6 }}$	0.82	1.73	2.470 (4)	148
O8-H8A \cdots O5	0.85	2.00	2.808 (4)	157
O8-H8B \cdots O3	0.85	2.29	2.753 (4)	114
O9-H9F . . 08	0.85	2.13	2.976 (4)	180
O9-H9E $\cdots{ }^{\text {O }} 8^{\text {i }}$	0.85	2.33	3.015 (4)	139

Symmetry code: (i) $-x+1,-y+1,-z+2$.

All H atoms were located in a difference Fourier map and allowed to ride on their parent atoms at distances of $0.93(\mathrm{C}-\mathrm{H}$ aromatic), 0.96 ($\mathrm{C}-\mathrm{H}$ methyl), 0.97 ($\mathrm{C}-\mathrm{H}$ methylene), 0.82 ($\mathrm{O}-\mathrm{H}$ phenol) and $0.85 \AA(\mathrm{O}-\mathrm{H}$ water $)$, and with $U_{\text {iso }}(\mathrm{H})$ values of $1.2-1.5$ times $U_{\text {eq }}$ of the parent atoms.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We are grateful for our University's financial assistance though project 913-9207041142.

References

Bencini, A., Gatteschi, D., Zanchini, C., Haasnoot, J. G., Prins, R. \& Reedijk, J. (1987). J. Am. Chem. Soc. 109, 2926-2931.

Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01), SHELXTL (Version 6.10) and $S A D A B S$ (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Garcia, Y., Koningsbruggen, P. J., Codjovi, E., Lapouyade, R., Kahn, O. \& Rabardel, L. (1997). J. Mater. Chem. 7, 857-858.
Kahn, O. \& Martinez, C. J. (1998). Science, 279, 44-48.
Klingele, M. H. \& Brooker, S. (2003). Coord. Chem. Rev. 241, 119-132.
Koningsbruggen, P. J., Gatteshi, D., Graaff, R. A. G., Hassnoot, J. G., Reedijk, J. \& Zanchini, C. (1995). Inorg. Chem. 34, 5175-5182.

Moliner, N., Gaspar, A. B., Munoz, M. C., Niel, V., Cano, J. \& Real, J. A. (2001). Inorg. Chem. 40, 3986-3991.

Moliner, N., Munoz, M. C., Koningsbruggen, P. J. \& Real, J. A. (1998). Inorg. Chim. Acta, 274, 1-6.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

